婴儿宇宙和虫洞是一回事?

如果不是有什么不同? 我曾经读过史蒂芬·霍金的《黑洞、婴儿宇宙及其它》N遍 但问题并未因此而得到什么解决 其中唯一提到“虫洞”这个词的地方大概只有1处 也就是在 第十一章 黑洞和婴儿宇宙 中 有这样的一段话: 这种形式的空间旅行初看起来是可能的。爱因斯坦的广义相对论中存在这类解,它允许人往一颗黑洞落进再从一颗白洞跑出来。然而,后来的研究表明,所有这些解都是非常不稳定的:最为微小的扰动,譬如讲空间飞船的存在都会把这个“虫洞”,或者从该黑洞到该白洞的通道消灭。该空间飞船会被无限强大的力量撕得粉碎。这正如同躲藏在大桶里从尼亚加拉瀑布漂下去一样。 在后来的他的著作《果壳中的宇宙》里,却只提了“虫洞”,而并没有提到“婴儿宇宙” 但由于我对这“婴儿宇宙”和“虫洞”的理解 这两个似乎指的是同一事物 然而名称的不同使我疑惑它们是否相同 因此才提出这个问题
匿名用户    2006-05-11 20:21    

满意回答

黑洞加白洞=虫洞。有的学者认为,纺药黑洞与白洞时丰乡连在一起的,一个吸收物质,一个吐出物质。只不过这两个东西可能存截禁基在于不同的宇宙中,而虫洞就是两个宇宙的通道。白洞所在的宇宙就是婴儿宇宙。

匿名用户   2006-05-11 22:28
宝宝知道提示您:回答为网友贡献,仅供参考。

为您推荐:

其他回答

匿名用户    2006-05-20 17:17

60多年前,爱因斯坦提出了“虫洞”理论。那么,“虫洞”是什么呢?简单地说,“虫洞”是宇宙中的隧道,它能扭曲空间,可以让原本相隔亿万公里的地方近在咫尺。 早在20世纪50年代,已有科学家对“虫洞”作过研究,由于当时历史条件所限,一些物理学家认为,理论上也许可以使用“虫洞”,但“虫洞”的引力过大,会毁...灭所有进入的东西,因此不可能用在宇宙航行上。 随着科学技术的发展,新的研究发现,“虫洞”的超强力场可以通过“负质量”来中和,达到稳定“虫洞”能量场的作用。科学家认为,相对于产生能量的“正物质”,“反物质”也拥有“负质量”,可以吸去周围所有能量。像“虫洞”一样,“负质量”也曾被认为只存在于理论之中。不过,目前世界上的许多实验室已经成功地证明了“负质量”能存在于现实世界,并且通过航天器在太空中捕捉到了微量的“负质量”。 据美国华盛顿大学物理系研究人员的计算,“负质量”可以用来控制“虫洞”。他们指出,“负质量”能扩大原本细小的“虫洞”,使它们足以让太空飞船穿过。他们的研究结果引起了各国航天部门的极大兴趣,许多国家已考虑拨款资助“虫洞”研究,希望“虫洞”能实际用在太空航行上。 宇航学家认为,“虫洞”的研究虽然刚刚起步,但是它潜在的回报,不容忽视。科学家认为,如果研究成功,人类可能需要重新估计自己在宇宙中的角色和位置。现在,人啾弧袄А痹诘厍蛏希

全部展开 收起
匿名用户    2006-05-18 18:32

我说是黑洞和虫洞应该是连在一起的。也就是说。黑洞就像是一个门。虫洞就是另个门。从黑洞进。在从虫洞出来。不过就是不明白进黑洞后是不是真的像人们说的一进去就出不来了呢。还是要经过什么强大的磁场在从虫洞洞出来呢。是不是这样的呢。希望有人能说下。谢谢

匿名用户    2006-05-13 20:05

婴儿宇宙和黑洞(虫洞)的解释: 落到黑洞中去已成为科学幻想中的恐怖一幕。现在黑洞已在事实上被说成是科学的现实,而非科学的幻想。正如我所要描述的,我们已有很强的理由预言黑洞必然存在。观测证据强烈地显示,在我们自身的银河系中有些黑洞,而在其他星系中则更多。 当然,科学幻想作家真正做到家的是,他们为你描...述如果你真的掉到一颗黑洞中去将会发生什么。不少人认为,如果黑洞在旋转的话,你便可穿过时空的一个小洞而到宇宙的另一个区域去。这显然产生了空间旅行的可能性。如果我们要想到别的恒星,且不说到别的星系去的旅行在未来成为现实,这的确是我们梦寐以求的东西。否则的话,没有东西可比光旅行得更快的这一事实意味着,到最邻近的恒星的来回路途至少需要花八年时间。这就是到a---半人马座度周未所需要的时间!另一方面,如果人们能穿过一颗黑洞,就可在宇宙中任何地方重新出现。怎么选取你的目的还不很清楚,最初你也许想到处女座度假,而结果却到了蟹状星云。 我要非常遗憾地告诉你未来的星系旅行家们,这个场景是行不通的。如果你跳进一颗黑洞,就会被撕成粉碎。然而,在某种意义上,构成你身体的粒子会继续跑到另一个宇宙中去。我不清楚,某个黑洞中被压成意大利面条的人,如果得知他的粒子也许能存活的话,是否对他是很大的安慰。 尽管我在这里采用了稍微轻率的语气,这篇讲演却是基于可靠的科室作根据。我在这里讲的大部分现在已得到在这个领域作研究的其他科学家的赞同,尽管这是发生在新近的事。然而,这篇讲演的最后部分是根据还没有达成共识的最近的工作。它引起了巨大的兴趣和激动。 虽然我们现在称作黑洞的概念可以回溯到二百多年前,但是摵诙磾这个名字是晚到1967年才由美国物理学家约翰·惠勒提出来的。这真是一项天才之举:这个名字本身就保证黑洞进入科学幻想的神秘王国。为原先没有满意名字的某种东西提供确切的名字也刺激了科学研究。在科学中不可低估好名字的重要性。 尽我所知,首先讨论黑洞的是一位名叫约翰·米歇尔的剑桥人,他在1783年写了一篇有关的论文。他的思想如下:假设你在地球表面上向上点燃一颗炮弹。在它上升的过程中,其速度由于引力效应而减慢。它最终会停止上升而落回到地球上。然而,如果它的初速度大于某个临界值,它将永远不会停止上升并落回来,而是继续向外运动。这个临界速度称为逃逸速度大约为每秒七英里,太阳的逃逸速度大约为每秒一百英里。这两个速度都比实际炮弹的速度大,但是它们比起光速来就太小了,光速是每秒186000英里。这表明引力以未免的影响甚微,光可以毫无困难地从地球或太阳逃逸。可是,米歇尔推论道,也许可能有这样的一颗恒星,它的质量足够大而尺度足够小,这样它的逃逸速度就比光速还大。因为从该恒星表面发出的光会被恒星的引力场拉曳回去,所以它不能到达我们这里,因此我们不能看到这颗恒星。然而,我们可以根据它的引力场作用到附近物体上的效应检测到它的存在。 把光当作炮弹处理是不自治的。根据在1897年进行的一项实验,光线总是以恒常速度旅行。那么引力怎么能把光线减慢呢?直到1915年爱因斯坦提出广义相对论后,人们才有了引力对光线效应的自治理论。尽管如此,直到本世纪六十年代,人们才广泛意识到这个理论对老的恒星和其他重质量物体的含义。 根据广义相对论,空间和时间一起被认为形成称作时空的四维空间。这个空间不是平坦的,它被在它当中的物质和能量所畸变或者弯曲。在向我们传来的光线或者无线电波于太阳附近受到的弯折中可以观测到这种曲率。在光线通过太阳邻近的情形时,这种弯折就会厉害到这种程度,即从太阳表面发出的光线不能逃逸出来,它被太阳的引力场拉曳回去。根据相对论,没有东西可以比光旅行得更快,这样就存在一个任何东西都不能逃逸的区域。这个区域就叫做黑洞。它的边界称为事件视界。它是由刚好不能从黑洞逃出而只能停留在边缘上徘徊的光线形成的。

全部展开 收起
匿名用户    2006-05-11 20:28